SOME REGULARITIES FOR A COOLED CURRENT LEAD

A. V. Evlampiev UDC 536.483

An analytical study is presented for leads cooled by the vapor from the boiling coolant,
Graphs are presented for leads with a temperature difference between room temperature
and helium temperature. It is found that the model is of sufficient accuracy for design
calculations,

Low-temperature cryostats often use current leads cooled by vapor, and this considerably reduces
the boiling loss. These cooled leads have been the subject of several studies [1-10], but there is no theory
that describes all the observed properties, and such a theory should describe reasonably accurately a suit-
able means of designing them. The present study attempts to fill this gap.

1. Cooled leads are used mainly for superconducting devices, so one can avoid heat release in part
of the lead directly adjoining the ligquid coolant by using superconductors [1]. The resistive part of the iead
above the superconducting one should constitute a good heat exchanger in contact with the vapor. One can
represent the specific resistance of the metal as a function of temperature via a linear relationship to a
first approximation; the thermal conductivity is assumed constant, and then the assumption of ideal heat
transfer* gives the differential equation for the steady-state heat-flux distribution in the lead as
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The quantity g appearing in the equation can be derived from
T, T,
g p(T)dT = p { TdT. (2)
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We solve (1) to find the temperature distribution in the lead with the boundary conditions T =T, at x = 0
and T =T, at x = 1, the result being
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Here I > M; if I < M, the sines are replaced by hyperbolic functions.t In practice, T, > T,, so the lead
temperature is determined mainly by the first term in (3). Here we use (3) without the second term, which
is justified for p(T;) < p(T,) and is equivalent to neglecting the Joule heat at the cold and relative to the
heat produced in the rest of the lead.

The thermal-conduction equation gives the heat flux into the liquid as
Q = AsdT (){d% |y—o- 4

We substitute for T(x) from (3) to get a formula for Q in the general case where M and I may take any
values; on the other hand, these quantities are linked in a cryostat with such leads, since the evaporation
rate is determined by Q:

*The heat-exchanger design is not considered here.
+This applies to all the trigonometric functions appearing below,
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Fig. 1. Dynamic characteristics: 1) K(K; =0); 2) Mgpt = f(Iopt); 3)
M(K, = 0.75); 4) M(K; = 0.5); 5) M(K; = 0); 6) M =15 7) Mgy mmax; 8)
Mer min-

Fig. 2. Characteristic points of the dynamic characteristic in rela-
tion to K,.

1 (m—my) = Q. (5)
We eguate (4) and (5) to get the transcendental equation
Dy T—KZexp (—M/2)
2sin(MV K2 —1/2)

If D is given, this equation defines the functions K = £(I) and M = £(I) (the latter is called the dynamic char-
acteristics of thelead). We get a family of these functions for various m,.

K—K,=

(6)

We see from (6) that K — 1 for I =, ie., the dynamic characteristics tend asymptotically to the
linear function M = I (Fig. 1). This agrees with relationships obtained by experiment [2] and from theory
(3] on the assumption that p = const, A = const. From the definition of K for i > iy, we have m = 2iVBA /c;
if the properties of the metal follow the Wiedemann— Franz law then VX = 7k /eV3 = const, and the evapora-
tion rate is dependent only on the current and the specific heat of the vapor.

The evaporation rate falls when the current is switched off, but it remains higher than m; and is de-
termined by the thermal conductivity of the leads.

I the current is greater than the optimal value, there is a temperature rise (T, ,. /T,) in the leads
defined by (3), in which
n— arctg (112 — MEM)
VI M2
is the coordinate of the point in the lead having the highest temperature. In these formulas, M and I must
be taken in accordance with the appropriate dynamic characteristic,

X =

("

By opposing various conditions on (6) we have obtained a series of relationships defining the behavior
of the characteristic points as K, varies; the resulting equations were solved graphically. It was assumed
that AT =T,-T; ~ T, = 300°K, /¢ =3.95°K, which corresponds to the current input conditions for leads
working between room temperature and liguid helium. Figures 1-5 give the results.

Figure 1 shows the following functions: three dynamic characteristics for K, = 0; 0.5; 0.75; the asymp-~
tote M = I, to which these tend for I — «; a graph for the shift in the optimal point Mopt(Iopt) as K,increases;
and two graphs for the critical values of M and I (see below on critical values), The dynamic characteris-
tics show how m increases if i rises from 0 to = for various my; here K decreases from = to its least
value Kopt’ on the way passing through unity and then rising asymptotically towards unity.

Figure 2 shows how the characteristic points vary with K ; the functions Mopt (Ko) and Iopt(Ko) give
the displacement of the optimal point at which the straight line from the origin of slope Kopt (K,) touches
the dynamic characteristic. The funetion M;,;(K,) defines the behavior of the point of intersection between
the dynamic characteristic and the asymptote M =1, while M(0) = f(K;) does the same for the intersection
with the ordinafe axis,

1415



//f

U %(21 |

\1 o 4l
S — e — J
85 .
4 / 1 e ; + —1
) ) x — 11
. , & —I

1
10 12 % Ifiopt 0 5 m I~
Fig. 3 Fig. 4

Fig. 3. Coordinate of the hottest point and temperature rise for K,
=0.

Fig. 4. Comparison of calculations with published data in dimen-
sionless form: 1 and 2) lines representing calculations for K, of 0
and 0.1 respectively, points from (1];1, I) io t =2 %1320 A; 2, II)
10pt =2 X 500 A; 3) points from (2], lme calculated for my = f(1) via
the law of curve 4; 3, III) igpt = ‘2 x10 A; 4) points for M, calculated
from the experimental points 3 via Fig. 1, M, = £(I); 5) quadratic
relationship closest tothe law of curve 4, M, = 0.071%; 6) Moy max
=f(I); M M =L

I I> Iopt, the dynamic characteristic (Fig. 1) very rapidly approaches the Mgy, min(l) value, while
remaining above it, but being below M, t(Iopt) ; if the above properties are known and we have available
the functions shown in Fig. 2, we can construct the dynamic characteristic for any K, without solving (6).

Figure 3 shows (3) and (7) as calculated for K;= 0, with the value of x in (3) taken from (7). I is
clear that currents in excess of the optimal cause the distance from the cold end to the hottest point to
diminish, the resuit being 0.5 of the lead length when i /igpt #1.6. If the current is increased further,
the peak temperature tends asymptotically towards the hot end. The excess temperature rise (Tyax/T,)
increases fairly rapidly, and this factor becomes about 3 for i/igpt = 1.41 and about 6 for i/igpt = 1.45.

2. In some cases, the highest current has to be supplied only periodically (for instance, when a fro-
zen-in field is used with a superconducting solenoid). In that case, the overall loss of coolant can be
reduced by optimizing the current lead to some smaller current., This problem can be handled as follows
if we assume that ¢, A, and 8 are known:

1) By specifying the following quantities: m,, imax, Tpaxs

2) Taking Ty a5 /T, from a curve analogous to Fig. 3, we determine I /Iopt =1/iopt and hence igpt,
the current for which the lead should be optimized;

3) We calculate K, and from Fig. 2 we determine Kopt, Iopt, Mopt, M(0);
4) We calculate (l/s)opt, Mopts m(0);

5) Knowing I/Iont = ipax /1 lopt and Ippg, we calculate the I corresponding to iy,,.. We use the graph
for the dynamlc characterlstw corresponding to this K, to determine M and calculate the evapora-
tion rate m at iy, qy.

3. The experimental evidence and the formulas of [3] give us for fairly high currents that dm /di
~ VpA/en = 0.648-10~% g /sec - A, where we have taken pA = 0.45 *107% W - @/°K to bring about agreement
with experiment, this corresponding to the mean temperature of the lead of about 30°K. In that case, the
temperature in the upper part of the lead considerably exceeds room temperature, which restricts the cur-
rent,
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Figure 1 shows that currents larger than the optimal value pro-
duce slopes approximately equal to unity, so dm/di ~ 2VgA/kc =27k

/ '2)’ /cev3 =0.602-1074 g /sec- A,

a7 7 , The ratio (m/1)gpt = 2.71 1073 1/h - A has been obtained [1] as

PO, the same for two sets of leads made of electrotechnical copper working
a5 - at optimal currents iy = 2-500 A and igpp = 2-1320 A; the factor 2 is

) / introduced because a set of leads consists of two such. The value

Mo (), 10

MM oy

m, = 0.15 liter /h = const, was determined by the cryostat used.
425+— S B These values were used to calculate gA = 2.17-107% W+ Q/°K%; K,

g =0.035; As/I = 0.0865 W /°K for the 2X 1320 A set and fA=2.14 x 107°
W /Q/°K%; K, = 0.0927; As /I = 0.0314 W /°K for the 2 x 500 A one. Then
0 g25 45 a7 Ky the observed values were converted to the dimensionless M and I, which
may be compared with the calculated values in Fig. 4. The observed
m(0)/mqpt and m, /m(0) for these two sets of leads are shown by points
o;.the ()mrves for the calculated M(0) /Mgyt = £(Ky) and My /M(0} = £(Kp)
(Fig. 5).

Fig. 5. Calculated values for
some ratios and observed values
of {1].

The observed m(i) of [2] are shown in Fig. 4 in dimensionless

form. In the conversion we took all the dimensional coefficients in M
and I as in [2]. Two points may be noted: the observations do not coincide with the curves calculated on the
assumption that m; = constant, and also there was no damage to the leads on using a current more than 1.5
times the calculated optimum value (paper components were used in this design of lead), Both features
are due to the resistive part of the lead directly in contact with the liquid coolant, which was below the heat
exchanger (cooled lead proper) and did not exchange heat efficiently with the vapor. The resulting Joule
heat in this part went to evaporation. In that case, m, =£(i), and then increases in I caused M to deviate
from any single dynamic characteristic (Fig. 1) and to pass from & curve of lower K; to one of higher K.
If the point with coordinates M and I in Fig. 1 does not fall below the function Mopt Topt) then the leads
do not become excessively heated, as Fig. 4 shows. The M(I) for various K, of Figs. 1 and 2 enable one
to calculate My(I), which explains these observations. One can combine Figs, 1 and 4 to determine values
for K, and I for each point, The values M, = K,I are shown in Fig. 4, together with the approximating re-
lationship M, = 0.07 I (subject to the condition nm; = Ri%, where R = constant). Then R = 16 M5l/scI?
~0.25-107% Q.

Then R acts as an automatic source of cold vapor to cool the leads and tends to suppress the exces-
sive heating which enables one to attain m /m(0) = 3.45; this property can be utilized for the purposes for-
mulated in the preceding section, ‘

These comparisons show that SA can be taken as 2.15-10-8 W - 9 /°K? for electrotechnical copper,
but it is not clear from experiment what values should be selected for 8 and A, If we use the listed data of
[11] and assume Py 9o =0.03 uQ2-cm, we get from (2) that 8= 0.512-107% Q- cm /°K, and the corresponding
value is A =4.,2 W/em - °K. ’

4. A characteristic feature of the calculation is that one uses only the single numerical ratio D = ATe
/7; the calculated functions differ little for different kinds of materials used for such leads, and the rela-
tionship is essentially governed by the linear temperature dependence of the product of the specific resis-
tance and the thermal conductivity.

The increment in the evaporation rate with the current is approximately constant at currents exceed-
ing the optimal value; it is dependent in the main on the specific heat of the vapor, and is largely indepen-
dent of the lead material and is quite independent of the natural boiling rate of the cryostat, and also of the
length and cross section of the leads, as well as of the temperature at the hot end of the lead and the latent
heat of evaporation.

The condition for an optimum in the lead dQ /d(! /s) = 0 is equivalent to the specification dT/dl]X =1
=0, so there is no heat influx from the hot end of the lead in the optimum case, and the liquid coolant re-
ceives the power difference

i> Iopt the temperature gradient at the hot end increases very rapidly, as does the heat flux along
the lead. .
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Figure 5 also shows that m(0) and moptbecome indistinguishable from m, as K, increases; physically
this means that the current is so small and the specific heat of the vapor is so large that (8) tends to zero.
Then (I /Sopt ™ © (M and I — <), and this resulf is obtained on account of neglect of the second term in (3).
However, one may assume that the combined leads suggested in [3] will correspond precisely to our model
for zero resistance of the cold end. Then the above arguments apply, and for K; = 1 one can design a lead
that produces practically no additional boiling of the coolant in the cryostat.

We get a dual inequality from the trigonometric functions in the above formulas:
A<V P —M <2n

if I and M are such that the square root equals 27, then Q and T, become indefinitely large, as (3) and
(4) show; the function My, yin(f) has been derived from this condition. When the root equals 7, Q does not
attain its optimum value, and the corresponding function is My max(D); Fig. 1 shows that K; = const and
I> Igpt give the interval between Mopt(lopt) and Mcy min(T) 28 fairly small, while that between M(I) and
Mcrmin(I) is evenless. The practical conclusion is that any accidental reduction or uneven distribution of
the vapor passing through the lead causes a marked increase or marked nonuniformity in the heating.

The point of intersection of Mcrmax(D) with the abscissa I (I =7, Fig. 1) defines (I/s), ; for an un-
cooled lead (here doubling the current should inevitably burn out such a lead, since then I = 27), The evap-
oration rate for such a lead in the optimum case is mgj opt = my + IATVBA /1. As we have mgqe opt
= KoptZi\/E'X /¢ for a cooled lead in the optimum case, the ratio of these rates is mgj opt/Meoo opt = (K
+ D/Z)/Kopt and is about 49.5 for K = 0 and about 39 for K; = 1,

We have presented above mainly the methods of analysis and calculation for such leads, Lack of
space has forced us to omit formulas that confirm the conclusions but the following comments may use-
fully be made:

Exact solution of the topic in section 2 requires a series of curves as in Fig. 3 for various K;, while
the sequence of calculations should contain a series of operations 3) and 2) for each new K;

One should distinguish K, = My/I in (6) and K, = My/Iopt in the functions shown in the figures;

. The Kgpt of [1] for leads handling 2 x 500 and 2 x 1320 A cannot he taken as general results because
the K, for these were different which may represent an experimental error.

NOTATION

T (x) is the lead temperature as a function of dimensioniess coordinate;

Ty, Ty, Tjmax  are the temperatures of the cold and hot ends of the lead and maximum temperature (ex-
ceeding T,) at some point on the lead;

b is the proportion of the lead length reckoned from the cold end;

l is the lead length;

s is the cross section;

i is the current;

p(T) is the real temperature dependence of the specific resistance;

B is the factor in the linear approximation for the temperature dependence of the specific
resistance;

A is the thermal conductivity;

7 is the latent heat of evaporation;

c is the specific heat of vapor;

Q is the heat flux from the lead into the coolant;

m is the coolant evaporation rate;

m is the coolant evaporation rate determined by all heat sources other than Q (this includes

the part of the lead not cooled by the vapors if this has a resistance and is in contact with

the liquid);

m(0) is the evaporation rate in a cryostat at zero current;
R is.the resistance of uncooled part of lead;

P4.2K s the residual resistance;

Py is the Joule heat produced throughout the lead;

k is the Boltzmann's constant;

e is the electronic charge; and 7 = 3.14.
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Dimensionless Quantities

D =cAT/y is the ratio of specific heats;
M =(c/A)(l/8)m is the evaporation-rate parameter;
I=2VB/Al/si is the current parameter;

K =M/I=(c/2VfA)(m/i) is the ratio of evaporation rate to current,
My = (c/A)(E/8)my;

M(0) = (¢ /A)(Z/8)m(0)5

Mopt = (/N [(L/8)mgpts

Lopt = 2Y(B/2) [(1/%)ilopt;

Kopt = (¢/2/BN)(m /1) gt

Ky = (¢ /20BN (m, /1).
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